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There are several models describing the dynamics of a population in the presence of resources. Cur-
rently, these models are based on empirical foundations, most commonly the Monod function, and
fail to include some core phenomena. We present alternatives with increasing complexity and basis
on known biological processes that reproduce the observed behaviors. In addition, we analyze data
collected from different experiments and also from experiments designed and executed by us, using
cultures of E. coli to observe the bacterial growth in different conditions and find the fitting of the
models. The simulations we present suggest that the Monod function may be a good approximation
to some experiments but not the correct model, although further tests need to be done to validate or
discard our models. We propose an experiment where the bacterial growth and nutrient concentrations
are measured separately, with the intention of finding the relation between the two and calibrate them
using the models here developed.

I. INTRODUCTION AND STATE OF THE ART

Living beings interact with other beings in order to feed
themselves, cooperate or fight for the same resources. These
interactions give rise to a highly complex network that deter-
mines the population dynamics and whether they lead to the
species’ coexistence or extinction. Moreover, species have
the ability to adapt to changes in the environment, [2], but
the connection between this phenomenon and the existing
populational models is still missing. Biologists, physicists
and mathematicians have been studying small ecosystems
and creating models to describe the dynamics of species, [8]
[14] [15]. Although they are deterministic, these models can
not be implemented with basic analytical tools given their
large number of variables and dependencies, which requires
employing methods of dynamical systems theory.

The bacteria E. coli, discovered by Escherich in 1885,
[5], are often chosen in experiments for their simplicity, fast
growth and easy access. They are found in the intestines of
warm-blooded animals, have a size of the order of 1 µm and
can divide every 20 minutes, [11].

In this thesis we show the modeling of populations con-
suming one or multiple types of resources, reproducing and
dying, using the law of mass action, [10], as well as with
the Monod model, [8]. We also show the simulations result-
ing of these models and compare them to data obtained from
our experiments and collected from other sources, [12], on
E. coli growth curves in the presence of resources.

A. FIRST IMPORTANT GROWTH MODELS AND
OBSERVATIONS

In 1798, the demographer Malthus described the first most
important population growth model, [1]: when resources
are unlimited, the population will grow indefinitely with a
growth rate proportional to its existing number of individu-
als. The model can be deduced from the kinetic equation (1)

assuming that the number of individuals N of a population
reproduce in the presence of a resource R, at a positive rate
k while the resource is not wasted in the process,

R+N
k→ R+ 2N . (1)

Using the law of mass action, [4][10], the time equation
describing that growth can be obtained from the equation (1),{

N ′(t) = k R(t)N(t)

R′(t) = 0
. (2)

The solutions of this system of equations are{
N(t) = N(0) ekR t

R(t) = R(0)
. (3)

In this model, resources are always available, which im-
plies that the population explodes exponentially over time.

In 1845, the mathematician Verhulst proposed a modifi-
cation to the Malthusian model, where he included the con-
sumption of resources, [3]. Opposed to the kinetic model
equation (1), the resource R is now expended as the repro-
duction happens,

R+N
k→ 2N. (4)

The time equations for the population growth and re-
source consumption can be derived from equation (4) in the
same way as before, using the mass action law, [10]:{

N ′ = k RN

R′ = −k RN
⇐⇒

{
N ′ = kN (C −N)

R′ = −k R (C −R)
(5)

with
C = R(t) +N(t) = R(0) +N(0), (6)

that is a conservation law defining the carrying capacity con-
stant C, that prevents the population from growing perpet-
ually. System (5) shows that the equations are logistic, and
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have the solutions
N(t) =

C ekCt

C/N(0)− 1 + ekCt
,

R(t) =
CR(0)

R(0) + [C −R(0)]ekCt
.

(7a)

(7b)

From the first equation in (5), we get

N ′

N
= k R , (8)

a linear relation between the normalized growth rate of the
population and the amount of resources.

In 1941, Monod studied a culture of E. coli in a medium
containing glucose and proposed a sigmoidal relation be-
tween the culture’s normalized growth rate and its nutrient
concentration R, [8]:

N ′

N
= gmax

R

R1/2 +R
(9)

where R1/2 is the concentration for which the growth is half
the maximum, gmax.

Although revolutionary, this empirical model described
a single species in the presence of a single nutrient which
is too simplistic, since species depend on different nutrients
for growth and are never isolated. Moreover it could only
produce accurate results for short-term evolution.

Monod also discovered the diauxic growth (Fig. 1).
When bacteria are in the presence of different nutrients, they
”evaluate” the energy cost of metabolizing each one vs the
growth rate they provide, and consume them by order of most
to least favorable, generating different growth rate phases
over time, named diauxies. This adaptative mechanism en-
sures species to have the biggest growth rate when the popu-
lation is small (more fragile) and provides a smaller growth
rate when the population becomes bigger (smaller risk of ex-
tinction).

Fig. 1: E. coli density over time in a medium composed by glucose
and sorbitol in different proportions: A: Glucose 50 µ g/ml; sorbitol
150 µ g/ml. B: Glucose 100 µ g/ml; sorbitol 100 µ g/ml. C: Glucose
150 µ g/ml; sorbitol 50 µ g/ml. Adapted from [8].

However, Monod’s growth model (9) could not explain
the diauxic growth he observed.

In 1969, the ecologist Robert MacArthur proposed a
model describing a group of B different species (each rep-
resented by the index β) with Nβ individuals, competing for
J different types of common resources (each represented by
the index j), and introduced different timescales for the rates
of supply and consumption, [9]. MacArthur assumed the rate
of growth of a population, N ′β , to be proportional to the al-
ready existing population, Nβ , the number of resources of
each type, Rj , their relative importance, wj , and the proba-
bilities of an individual of a species to consume the different
nutrients, pβj . The number of resources of type j varies ac-
cording to their current amount, Rj , the carrying capacity
associated with each resource, Cj , and to the probability of
being eaten by any of the species and their population size.
This model is described by the logistic equations

N ′β = NβMβ

(∑
j

pβjwjRj −RTβ
)

R′j = Rj

[
rj

(
1− Rj

Cj

)
−
∑
β

pβjNβ

] . (10)

The constant RTβ is the threshold mass of resource nec-
essary to maintain the population, Mβ is the proportion be-
tween the mass of resource and of the population it origi-
nates, and rj is the maximum rate of resource variation. All
of these constants are non negative.

In 2014, Guillaume Lambert and Edo Kussell did a se-
ries of experiments with cultures of E. coli feeding off glu-
cose and lactose alternately [13]. They noticed that when
consuming the same nutrient as before, the lag phases of the
transitions between nutrients shortened, even if the daughter
cells had never consumed the nutrients. They concluded that
this phenomenon was associated with a non-genetic mem-
ory. Four years later, Cerelus et al., [16], discovered differ-
ent molecular mechanisms related to this history-dependent
behavior and observed that the duration of the lag phase was
proportional to the amount of time the cells were feeding off
the other nutrient.

B. RECENT MODELS

Based on the MacArthur’s work (10), Posfai et al. presented
a model in 2016, [14], that accounted for the fact that organ-
isms work with a limited amount of energy and therefore,
need to choose how to allocate different fractions in order to
favor the traits that maximize the species’ probability of sur-
vival. This sometimes means reducing certain performances
in order to enhance others (trade-offs).

Similarly to the MacArthur’ model, the population
growth rates (N ′β) vary according to the current number of
individuals (Nβ) of each population (β), the death rates (δβ),
the nutritional values (vj), the nutrients availability (Aj), and
the consumption rates (αβj) of every resource j by each
species β, called ”metabolic strategies”. The variations of re-
sources concentrations (R′j) are proportional to their supply
rates (sj) and decrease with the rates of consumption (αβj)
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and degradation (dj):
N ′β = Nβ

[
J∑
j=1

vjαβjAj(Rj)− δβ

]

R′j = sj −
B∑
β=1

NβαβjAj(Rj)− djRj

, (11)

where

Aj(Rj) =
Rj

Kj +Rj
(12)

is a Monod type of function with Kj being the concentration
for which Aj is half the maximum. The metabolic strategies
are constrained by the maximum uptake rate Uβ they are ca-
pable of,

J∑
j=1

wjαβj = Uβ . (13)

Posfai et al. tested the possibility of coexistence of a sys-
tem consisting of a group of species in the presence of three
nutrients with different supply rates. In this case, by equa-
tion (13), given two metabolic strategies for a certain species,
the third one is automatically determined. Thus, a triangu-
lar plot where the axes go from 0 to 1 (simplex plot), is the
perfect way to visualize the distribution of metabolic strate-
gies. Fig. 2 shows our simulations reproducing the Posfai
et. al work. The results indicate that the addition of a species
(in red) whose metabolic strategies allow to enclose (convex-
hull) the supply rates is determinant to the future of all the
other species. This, of course, discloses the importance of
having certain species in an ecosystem.

In December 2018, Pacciani-Mori, Suweis and Maritan
constructed a model that assumed the same equations as Pos-
fai et al., (11), (12) and (13), but dynamic metabolic strate-
gies instead of fixed ones, [15]. Doing so, they introduced
the fact that species have the ability to adapt to changes in
the nutrients’ concentrations Rj . To achieve that, Pacciani-
Mori et al. required species to adapt in a favorable way, i.e.,
so that they would evolve in order to maximize their growth
rate: α′βj ∝ ∂αβj

(∑J
j=1 vjαβjAj − δβ

)
.

Now that the metabolic strategies are dynamic, there
is a maximum uptake rate (U∗β ) for each species:∑
j wjαβj(t) = Uβ(t) ≤ U∗β , that can be written as Qδβ .

Therefore, the evolution of metabolic strategies (see page
4 of the supplemental material of [15]) is described by the
equation

α′βj = αβj ρ δβ

[
vjAj

−Θ
( J∑
j=1

wjαβj −Qδβ
) wj∑J

k=1 w
2
kαβk

J∑
l=1

vlAlwlαβl

]
.

(14)

Fig. 2: a1) and b1): simplex plots with metabolic strategies of 15
species (B = 15) relative to 3 different resources (J = 3) repre-
sented by colored dots, convex-hull of metabolic strategies in yel-
low, and supply rates s = (0.15, 0.19, 0.66) in a black star. The
blue metabolic strategies were chosen randomly between 0 and 1
such that their convex-hull would not include the supply rates. The
red metabolic strategies were chosen such that the new convex-
hull formed by the 15 species would include the supply rates. a2)
and b2): simulations obtained with model equations (11) for the
evolution of the same 14 (a2) and 15 (b2) population densities,
Nβ(t)/Nβ(0), with parameters d = 0.1, δ = 0.1, R = 1, v = 1,
K = 1, w = 1, Uσ = 1 for times between 0 and 500/δ.

Pacciani-Mori et al. tested the model of equations (11),
(12) and (13) with the addition of equation (14), for the
growth of one species in the presence of two different nu-
trients in order to reproduce the observations of Monod. The
results are shown in Fig. 3.
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Fig. 3: Simulations obtained with model equations (11), (12), (13)
and (14) for 1 population of individuals of the same species with
access to 2 resources of different properties. Results of the simu-
lation for a) the population density, b) nutrient concentrations and
c) respective metabolic strategies, with parameters ~v = (2, 25),
~w = (1, 4), ~K = (1, 3), Q = 25, δ = 1 and ρ for times between 0
and 500/δ.

The individuals consume the first resource until it ends,
(Fig. 3b in orange). When this happens, the metabolic strat-
egy corresponding to this resource changes (Fig. 3c in or-
ange) and the population suffers a diauxic shift (Fig. 3a).
Then, the individuals consume the second resource until it
ends (Fig. 3b in blue). When this happens, the metabolic
strategy corresponding to this resource changes (Fig. 3c in
blue) and the population starts having a negative growth (Fig.
3a).

The populational models developed until now are empiri-
cal, i.e. without biological foundations. They allow us to de-
scribe the growth rate of populations in terms of parameters
but they lack an explanation for what mechanisms originate
variations on the rate of growth. Also, they do not take into
account the necessity of more than one nutrient for growth or
explain the process of cells developing the metabolic strate-
gies. Because of this, we decided to focus on creating a
model based on the known and measurable biological mech-
anisms of reproduction.

II. ANOTHER APPROACH TO POPULATIONAL
BIOLOGY

A. MITOSIS WITH MEMORY

The first model we consider is overly simplistic, consisting
in a single population of cells in the presence of an inex-
haustible nutrient supply. However, in general, mitosis time,
i.e., the time cells take to divide into two, depends on the
pressure, temperature and availability of resources in a com-
plex manner and for that reason we opted by a stochastic
model. We assume that, initially, every cell (i) from the pop-
ulation divides itself after 3 hours, the first generation time
(τ1i). All cells are considered to have memory such that the
generation time of the daughter cells (τ2i) will be given by

τγi = τγ−1,d i2e + ε (15)

in which ε is a random variable obeying the normal distribu-
tion σ, i.e. N (0, σ2).

In Fig. 5 we show the result of the simulation of a popu-
lation over 40 hours obtained using the model equation (15),
starting with a single cell. As a result of ε, the mitosis lose
their initial synchronization gradually and produce a macro-
scopic trend curve consistent with the Malthusian model, as
observed by the biologist Prescott in 1959, [17]. The dis-
tribution of the mitosis ages is Gaussian, as expected since
the desynchronization comes from the the stochasticity of the
variable ε. Rubinow [18] arrived to the same distributions us-
ing the experimental data of Prescott.

By doing a fit of the simulation the population density,
N , over time for the case where ε = 0, we discover that the
curve is a power function of the form N ≈ 1.213t (Fig. 4) in
agreement with [10].

Fig. 4: Growth curve of a population for 65 hours starting with
one cell and all mitosis times of 3.5 hours, and fit to a power func-
tion; the result of the fit gives N ≈ 1.213t — fit executed with the
FindFit function of the software Mathematica and validated by
the Spearsman’s rank coefficient ρr = 0.999, [7].
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Fig. 5: a) Growth curve of a population for 20 hours starting with
1 cell with mitosis time of 3h; ε is randomly chosen from a nor-
mal distribution with mean value 0.0 and standard deviation 0.1; b)
Growth curve of a population for 40 hours with the same conditions
as in a); c) distribution of all the ages of mitosis occurred during the
40 hours population growth.

B. MITOSIS CONTROLLED BY CONSUMPTION OF A
SINGLE NUTRIENT

In this model, we assume that the amount of nutrient avail-
able is limited. Cells uptake the nutrient from the medium
and transform it into protein for use (metabolization). Once
the cell has metabolized enough resources, P ∗, it begins mi-
tosis, [17].

Consider that the probability of a cell i finding nutrient
is proportional to its quantity, R(t), and the duration of the
search, ∆t. Also, the uptake of nutrient in reality is subject
to stochastic fluctuations, for which we add the parameter
λ, randomly chosen from a normal distribution N (µ, σ2) in
each time step. Therefore, during a time interval ∆t, the
cell i metabolized protein Pi(∆t) is given by λiR(t)∆t and
thus, the total amount of protein produced at an instant can
be written as a recursion relation:

Pi(t+ ∆t) = Pi(t) + λiR(t)∆t. (16)

Likewise, the amount of nutrient available at an instant is
equal to the amount of nutrient there was previously minus
the amount consumed by all the cells in that time interval,

R(t+ ∆t) = R(t)−
N∑
i=1

λiR(t)∆t. (17)

We implemented the model equations (16) and (17) to
simulate the growth of a population and found the sigmoidal
function that best fitted the curve (Fig. 6).

Fig. 6: In blue, simulation obtained with model equations (16) and
(17) for the evolution of a population starting with 1 cell, feeding off
1 nutrient and with threshold protein P ∗ = 1 during 168 hours. The
parameter λ varied according to the normal distribution with param-
eters µ = 1.5×10−4 and σ = 2×10−4); In red, the correspondent
logistic function 7a with parameters c = 679 and k ≈ 0.0003 ob-
tained with the FindFit function of the software Mathematica,
corresponding to a Spearsman’ rank coefficient ρr = 0.927, [7].

To study the influence of the stochasticity in the evolu-
tions of the population and nutrient, we tested different dis-
tributions for the parameter λ. Observing Fig. 7 we can
see that when the standard deviation σ increases (b to a),
the desynchronization increases, i.e., the population curve
becomes smoother, and macroscopically it takes a logistic
shape. When the mean value µ increases (b to c), the bacteria
eat in average more resources in each time step, so the popu-
lation curve shifts left and becomes steeper, which translates
to a faster growth that starts sooner.

Plotting the relation between the normalized growth rate
and nutrient obtained from the same simulated data, we dis-
cover a linear curve, shown in Fig. 8.

From the previous analysis of the logistic and the Monod
models we arrive to different relations between the normal-
ized population growth and the amount of resource: it is
linear when using the Mass action law approach, (8), and
non-linear with the Monod function, (9). Thus, under our
assumptions, the correct model is the logistic.

However, to test our hypothesis, and understand the rela-
tion between the Mass Action Law and the Monod model, it
is necessary to perform empirical measurements and see how
they relate to the corresponding growth curves obtained from
these models.
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Fig. 7: Simulations obtained with model equations (16) and (17)
for the evolution of a population of cells feeding off 1 nutrient dur-
ing 168 hours (in blue) and for the nutrient (in orange). The pa-
rameter λ varied according to the normal distribution N (µ, σ); a)
µ = 1.5 × 10−4, σ = 10−3. b) µ = 1.5 × 10−4, σ = 2 × 10−4;
c) µ = 3× 10−4, σ = 2× 10−4;

Fig. 8: N ′/N vs R(t) from the simulated data for the evolution
of a nutrient concentration and a population of cells feeding off that
nutrient for 168 hours; The parameter λ varied according to the nor-
mal distribution with µ = 1.5 × 10−4 and σ = 2 × 10−4. The fit
of the curve gives a linear relation y = 10−4x with χ2 = 0.0004.

C. FIRST EXPERIMENT AND CALIBRATION

For the calibration of the model in B, we grew a culture of E.
coli in glucose and measured the optical densities every 20
minutes using a spectrometer. As the bacteria multiply, there
is an increase in the density of the solution that contains
them. Using this technique, the light that travels through
the solution will be partially absorbed by it, and the emitted
and transmitted intensities are measured at the wavelength of
600nm to compute a transmittance ratio. We tried to test how
the empirical Monod model (9) and the logistic model ob-
tained from first principles using mass action law approach
(7a) compare with the real growth curves constructed from
the data.

Procedure:
Initialy, the E. coli were storaged in a freezer at -80◦C. We
transferred a sample to a petri-dish containing solid minimal
media1 with 0.4% glycerol and took them to an incubator at
37◦C to stay over night (∼12 h).

On the second day we prepared a 96-well plate with 200
µL of minimal media (MM) and 20% glycerol in 9 wells. We
chose 3 colonies of the E. coli petri-dish and placed 3 sam-
ples of each into the previous wells. The 96-well plate was
put in a temperature controlled shaker at low speed (∼ 102

rpm) and 37◦C for the cultures to grow over night (∼12h).
On the following day, we placed the 96-well plate in

a multiskan spectrometer and read the optical densities to
guarantee that the biological (from the different cultures)
and technical (from the same cultures) copies were all sim-
ilar and in the appropriate range to start the main growth.
After the reading, we transferred the cultures to separate ep-
pendorf tubes and prepared a medium of MM with glucose in
concentrations 0.400%, 0.200%, 0.100%, 0.050%, 0.025%
and 0.001%. We distributed the solutions and cultures in a
96-well plate and inserted the plate in a bioscreen spectrom-
eter for the population to grow for 36 hours while monitoring
the optical densities.

Results and analysis:
Since we only have data from the optical densities, propor-
tional to N(t), and have no information of R(t), we need to
write equation (9) explicitly.

By Monod’s idea of conversion of nutrient into biomass,
[8], we have

N ′ = −kR′, (18)

from which

N(t)−N(0) = −k[R(t)−R(0)]. (19)

Rearranging equation (19) and combining it with equa-
tion (9) we obtain

1

N

dN

dt
= gmax

R(0)− [N(t)−N(0)]/k

R1/2 +R(0)− [N(t)−N(0)]/k
. (20)

1Minimal media is a solution containing 11.28g of M9 salts, 2mL of MgSO4 1M, 100µL of CaCl2 1M and 20mL of a 20% carbon source
(0.4% final) per liter of Mili-Q (ultra pure) water; M9 is a mix of 33.9g/L Na2HPO4, 15g/L KH2PO4, 5g/L NH4Cl and 2.5g/L NaCl.
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We can write the proportionality between the optical den-
sity and the number of bacteria as

OD(t) = qN(t), (21)

in which q is a positive real constant.
Substituting this relation in the model equation of (20),

we obtain

1

OD

d(OD)

dt
= gmax

R(0)− k̃[OD(t)−OD(0)]

R1/2 +R(0)− k̃[OD(t)−OD(0)]
,

(22)
where k̃ = 1/(kq).

The same can be done with the model (7a),

OD(t) =
m ebmt

m
OD(0) − 1 + ebmt

, (23)

in which b = qC and m = k/C and we see that OD(t) and
N(t) take the same form.

Fig. 9: Growth curve of E. coli population from culture 2 in
minimal media with 0.400% glucose and a) fit using the Monod
function. The fitted parameters for the equation (22) have results
R(0) = 0.210, R1/2 = 0.126, gmax = 0.007min−1, k̃ = 0.357
and OD(0) = 0.124 with a χ2 = 0.016, and ρr = 0.996;
b) fit using the Mass action law approach. The fitted parame-
ters for the equation (23) have results b = 0.007, m = 0.808,
OD(0) = 0.116, with a χ2 = 0.279, and ρr = 0.996.

Fig. 9 shows the optical densities obtained during the
first 750 minutes of the growth of culture 2 in 0.400% glu-
cose, and the comparison between the fitting of the model
equations (23) and (22).

To compare the compatibility of the logistic and Monod
models with the data, we tested the goodness of fit of equa-
tions (7a) and (9) using the Pearson’s χ2, [6], and the Spear-
man’s rank correlation ρr coefficients, [7], tests. An exam-
ple of the methods used can be found in the Appendices 4
and 5. The fits were done by first establishing the parame-
ters visually and then by setting increasingly closer randomly
generated values in order to lower the χ2 parameter for 104

iterations (see appendices 4 and 5).
Although both models provide very good approximations

to the data (χ2 � 1 and ρr ≈ 1), as expected, the model with
the most parameters will be easier to fit and have the smaller
χ2. Therefore, it is impossible to distinguish between the
two outcomes and say which model is the valid one by this
analysis.

The only way to present a solid justification for either of
the models is to make independent measurements of the op-
tical densities of the bacteria and the nutrient concentrations
and do the test of Fig. 8.

D. ANALYSIS OF EXISTING DATA

In 2011 Mostovenko et al. designed an experiment consist-
ing in a culture of E. coli supplied by a medium containing
both glucose and lactose to study the adaptation of bacte-
ria when consuming a different nutrients, during a diauxic
growth, [12]. In Fig. 10 we have the graph from [12] con-
taining the curves of the E. coli growth and the glucose con-
sumption.

We collected the data from his work and used it to make
a primary analysis of the relation between the population
growth and the nutrient evolution curves. We obtained the
data of the optical densities and glucose concentrations up
until the 420 minutes, where the diauxie transition begins.

Fig. 10: Measured optical densities in red and glucose concentra-
tions decreasing in blue. The optical density is proportional to the
number of bacteria present in the media.

It is possible to identify a quasi-linear region in the ini-
tial growth of Fig. 11, until 100 mg/mL, that contrasts with
the Monod model. In fact, the curve has the opposite con-
cavity. Still, the precision of the measured optical densities
and sugar concentrations does not seem sufficient to make
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this analysis conclusive. Therefore, it would be necessary to
elaborate an experiment where the E. coli grow in a single
sugar medium and take measurements of the population and
sugar optical densities with a great level of precision and then
repeat this same study.

Fig. 11: Curve of the OD’/OD vs glucose concentration calculated
from the first 420 minutes of data in figure 10 from the Mostovenko
work [12].

E. MITOSIS CONTROLLED BY THE CONSUMPTION
OF ONE NUTRIENT AND TOXICITY

In this next model, we consider that a nutrient, G, is trans-
formed by an enzyme, E, at a constant rate k1, creating an
enzyme-carbon complex, X , (the inverse reaction also oc-
curs, at a rate k−1), that is then transformed into an ab-
sorbable energy resource R at rate k2, and the enzyme is
released — this mechanism is represented by the Michaelis-
Menten kinetic diagram (24a). The resource R will then be
absorbed by theN bacteria at a constant rate k3, and the bac-
teria will reproduce (24b). When there is too much nutrient
in the medium it becomes toxic to the E. coli [13], repressing
growth (Ø), (24c):

G+ E
k1
�
k−1

X
k2→ E +R,

R+N
k3→ 2N,

G+N
k4→ Ø.

(24a)

(24b)

(24c)

According to the mass action law [10], the time evolution
equations become

G′ = k−1X − k1GE − k4GN

E′ = k−1X − k1GE + k2X

X ′ = −k−1X + k1GE − k2X

R′ = k2X − k3RN

N ′ = k3RN − k4GN

, (25)

from which we can obtain the conservation laws{
G′ − E′ +R′ +N ′ = 0

E′ +X ′ = 0
. (26)

As initially there are no enzyme-nutrient complexes yet
formed, X(0) = 0. Moreover, there is no transformed nutri-
ent in the beginning, R(0) = 0. Thus, the previous equations
can be written as{

G− E +R+N = G(0)− E(0) +N(0)

E +X = E(0)

=⇒

{
E = [G−G(0)] +R+ [N −N(0)] + E(0)

X = [G(0)−G]−R+ [N(0)−N ]
.

(27)

Substituting the above equations (27) in (25), we obtain

G′ = k−1

{
[G(0)−G]−R+ [N(0)−N ]

}
− k4GN

+k1G
{

[G(0)−G]−R+ [N(0)−N ]− E(0)
}

R′ = k2

{
[G(0)−G]−R+ [N(0)−N ]

}
− k3RN

N ′ = k3RN − k4GN

.

(28)

A steady state solution of the system of equations (28)
can be solved numerically by choosing the initial conditions.

Fig. 12 shows a simulation of the growth of a popula-
tion feeding off one type of nutrient and the corresponding
nutrient concentration over time along with the amount of
processed resource by the cells. In a) it is possible to identify
a region in the beginning of the growth where the population
density drops while the nutrient concentration is the highest
and the resource is being processed very quickly. Based on
the studies of Lambert, [13], and Cerulus, [16], this behav-
ior is expected whenever the nutrient concentration exceeds
a certain threshold. As a consequence of this initial toxicity
effect, the final population density reached is lower.

Fig. 12: Simulations obtained with the steady state model equa-
tions (28), as a function of t, for tmax = 5h, G0 = 5.0, E0 = 2.0,
N0 = 1.0, k−1 = 0.1, k1 = 1.0, k2 = 3.0, k3 = 1.0 and k4 = 0.5
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F. MITOSIS CONTROLLED BY THE CONSUMPTION OF
TWO NUTRIENTS AND TOXICITY

In this model we include a possible mechanism behind the
occurrence of diauxies. The kinetic equation (29) describes
the consumption of two different nutrients (G and S), by a
population of cells (N ), with the same enzymatic process as
before (the enzymes E1 and E2 help to transform the nutri-
ents into the corresponding complexes, X1 and X2 and suc-
cessively into metabolizable resource R). In addition, they
consider the reproduction of individuals in the presence of
resource and two different toxicities associated with each nu-
trient. 

G+ E1

k1
�
k−1

X1
k3→ E1 +R

S + E2

k2
�
k−2

X2
k4→ E2 +R

R+N
k5→ 2N

G+N
k6→ Ø

S +N
k7→ Ø

. (29)

Repeating the steps of section E with X1(0) = X2(0) =
R(0) = 0, we obtain

G′ = k−1 [E1(0)− E1]− k1GE1 − k6GN

S′ = (k−2 + k2S)X2 − k2SE2(0)− k7SN

E′1 = (k−1 + k3) [E1(0)− E1]− k1GE1

R′ = k3 [E1(0)− E1] + k4X2 − k5RN

N ′ = k5RN − k6GN − k7SN

. (30)

with

X2 = G(0)−G+S(0)−S−R+N(0)−N −E1(0)+E1.

Fig. 13: Simulations obtained with the steady state model equa-
tions (30) as a function of t for tmax = 25h, G0 = 5, α0 = 5
E10 = 1, E20 = 1, N0 = 1.0, k−1 = 0.1, k1 = 20, k−2 = 0.01,
k2 = 0.1, k3 = 0.2, k4 = 1, k5 = 2, k6 = 0.2 and k7 = 0.2.

Fig. 13 shows a simulation of the growth of a popula-
tion feeding off two different types of nutrient, and the corre-
sponding nutrient concentrations over time. As in Fig. 12, it

is possible to identify a region in the beginning of the growth
where the population density drops while the nutrient con-
centrations are at the highest. After that transition, the popu-
lation grows and reaches a plateau before continuing to grow.
Within this setup, the diauxie appears before the extinction
of the first nutrient, opposed to what Monod previously be-
lieved.

III. SECOND EXPERIMENT PROPOSAL

Bacteria take time to adapt in order to eat a sugar that they
have no memory of. When bacteria eat a sugar that they al-
ready know, their starting growth happens sooner and faster.
However, bacteria can transform the carbon source into an-
other through enzymatic processes. Since we want to search
for glucose-sorbitol diauxies, we should use a different sugar
for the pre-culture, that is not connected through natural en-
zymatic processes, ex. mannose, in order to avoid favoring
one of the growths.

To know the duration of the initial lag phases, the pop-
ulation maximum and the time necessary to reach it, it is
important to first obtain the growth curves of the bacteria
consuming the sugars separately, in the same setup as the
experiment that will be done with both sugars.

Part 1 procedure:
Grow an E. coli sample in an agar plate for 24 hours

in an incubator. Prepare solutions of MM with 0.2% man-
nose, MM with 0.1% glucose and, MM with 0.1% sorbitol.
The next day, select two or more E. coli cultures from the
agar plate and grow them in the mannose for 24 hours (pre-
culture).

To know the starting number of cells after the pre-culture
growth we need to relate the optical densities of some sam-
ples with the number of cultures in the same amount. By
platting a small quantity of cells in an agar plate and letting
them multiply in the incubator, it is possible to see scattered
cultures, each originated from a single cell.

On the following day, prepare dilutions from the pre-
culture on a 96-well plate to determine the optical densities
and number of cells. Read the optical densities of the plate
in the multiskan. Plate the dilutions in agar plates and put
them in the incubator for the cultures to grow. When they
are sizable enough to be seen count the number of cultures
in each plate and plot them against the corresponding optical
densities; the graph should be a linear tendency.

To start the culture on the single sugars, wash the cells
by centrifuging, removing the supernatant and re-suspending
them in MM. Grow half of the washed cells in the glucose
and half in sorbitol. Repeat dilutions, optical density read-
ings and plating to double check the starting number of cells.

Start a timer for one hour before taking them to the shaker
at 37◦C. Every next hour remove the tubes from the shaker,
take samples of all the tubes to a 96-well plate and read the
optical densities in the multiskan. Then, centrifuge another
sample to take a portion of the supernatant and use Sigma-
Aldrich assay kits to mix with the sugar. Read the sugar
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concentrations in the multiskan. Plot the optical densities
vs time as the experiment goes to see the growth curve and
detect its ending.

Part 2 procedure:
For the second part of this experiment we propose to re-

peat the experiment above but using both sugars at the same
time instead of just one and take measurements of the culture
and sugars optical densities to obtain the diauxic curve and
the nutrient consumption curves.

IV. CONCLUSIONS

The Monod function is an empirical model describing the re-
lation between the growth of a population of cells and the ex-
pense of nutrient it is feeding off. Many modern models are
based on the Monod’s function, however none has depicted
both the most essential phenomena: the diauxic growth and
toxicity effects.

We presented alternative models starting with a simple
construction, in section II A. There, we simulate the re-
production of cells regulated by a stochastic parameter ac-
counting for the memory dependent behavior observed in the
experiments of Lambert and Cerelus, [13] [16], yielding a
Malthusian curve.

In section II B we consider that bacteria have access
to a limited amount of nutrient and the mitosis is triggered
by a threshold amount of protein, obtained from the me-
tabolized nutrient, a phenomenon documented by Prescott

in 1959, [17]. The simulations reproduce sigmoidal curves
for the normalized population growth and nutrient concen-
tration. The relation between the two is shown to be linear,
in contradiction to the Monod’s function. Moreover, it agrees
with Verhulst’s equation (7a), derived from the Mass Action
Law, [10]. The experiment we executed (sec. II C) leaves the
possibility open for the fact that a Logistic can be the correct
model. In addition, the normalized growth rate and glucose
concentration from Mostovenko’s data, [12], exhibit a simi-
lar quasi-linear relation in the section before the diauxic shift
occurs (section II D).

To take into account the toxicity phenomenon observed
by Lambert, [13], and Cerelus, [16], we created a model de-
scribing a population feeding off a nutrient, in three parts:
nutrient metabolization, cells reproduction and growth in-
hibition through direct or indirect nutrient interaction. The
simulations indicate that the initial evolution of population
growth observed and identified as a lag-phase can be ex-
plained by this known toxicity effect and modeled, using the
law of mass action and only the basic interactions of con-
sumption reproduction and death.

The diauxic shifts, observed when bacteria are presented
to two nutrients translate into a decrease of the population
growth regulated by the nutrients expense. Because of this,
it is expected that the phenomenon is related to the same tox-
icity effect. The model of section II F was obtained by a
generalization of the previous one, and the implementation
of the equations suggests that the diauxic growth arises natu-
rally without the need for an added interaction.
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